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A simple two-equation model is derived which has the properties that the total 
contaminant exposure, the mean time of arrival, the temporal spread, and the 
skewness, are asymptotically correct at large distances downstream of a discharge. 
The role of changes in the breadth of a river upon the dispersion process is 
investigated by a means of an illustrative example. This reveals cubic dependence 
upon the breadth, and hence the great importance of wide reaches of rivers as regards 
contaminant dispersion. 

1. Introduction 
There have been two principal lines of development in the mathematical modelling 

of contaminant dispersion in streams : hydrodynamics, and time-series analysis. The 
concerns of hydrodynamics are to understand and to quantify the processes whereby 
dilution in rivers is so remarkably efficient. An intrinsic limitation is that the 
variability of the geometry in natural streams precludes the accurate application of 
any model based upon the detailed fluid mechanics. Moreover, it  is only recently that 
analytical models of sufficient complexity have begun to be developed (Smith 1983). 
Time-series analysis uses observed concentrations in the river to construct robust 
predictive schemes. The limitations are those of the data. Thus, for other discharges 
or flow conditions, the predictions might be unreliable. For example, in China the 
flow of the Yangtze will be reduced during the prolonged construction of a 
hydroelectric scheme. The vulnerability to pollution will be most when the ability 
to predict it is least. 

Fortunately, this seems to be an era of convergence between the two mathematical 
traditions. For example, Chatwin (1 980) shows how his earlier hydrodynamic study 
(Chatwin 1970) can be adapted to analyse field data. From the other side of the divide, 
Beer & Young (1983) apply time-series parameter estimation to a dead-zone model 
of the dilution process: 

a,c+ua,c = a(a-c) ,  ( l . l a )  

a, s = p(c-8) .  ( 1 . l b )  

The first equation describes the main flow with concentration c and velocity u ,  and 
the second equation describes the stagnant pockets with concentration s. The 
exchange parameters a,p relate to the relative volume of the stagnant pockets and 
to the mixing process. Variability along the river is accounted for by permitting the 
three adjustable parameters u , a , p  to vary from reach to reach of the river. The 
concentration profiles predicted by Chatwin (1980) or by Beer & Young (1983) share 
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the feature of marked skewness, which has long been recognized as a distinctive 
feature for contaminant dispersion in rivers (Nordin & Sabol 1974). 

In  this spirit of reconciliation, the purpose of the present paper is to derive a model 
of the form ( l . l a ,  b) from the detailed hydrodynamics. For uniform flows, Smith 
(1981, $5) has derived such a model, with the minor change that both zones have 
non-zero velocities. Here we encompass the non-uniformity of natural streams. 

Once the model equations have been derived, secondary questions are how do the 
coefficients vary with changing river flow rate, and which reaches of the river are most 
important as regards contaminant dispersion 1 These questions are answered by 
means of simple illustrative examples. The counterparts to the above coefficients 
u, a, are found to be approximately proportional to the river volume flow rate. The 
relative importance upon the dispersion process of different reaches of the river varies 
as the cube of the width. Hence, field observations or any other modelling effort, 
should be weighted towards the wider, slower-flowing reaches of a river. 

2. Advection-diffusion equation 
In  a river, advection velocities are typically a factor of 15 larger than turbulent 

velocities. One consequence is that along the flow (systematic) advection vastly 
dominates (random-walk) turbulent diffusion. Thus, in axes aligned along and across 
the flow (see figure l),  longitudinal diffusion can be neglected. A second consequence 
is that vertical mixing has an e-folding distance of the order of 15 water depths 
downstream. On the assumptions that this is much shorter than the horizontal 
lengthscale for changes in the river profile, and that the river is much wider than it 
is deep, we shall regard the contaminant as being vertically well mixed. 

In  view of the above considerations, we commence our analysis of contaminant 
dispersion in natural streams with the vertically averaged two-dimensional 
advection-diffusion equation : 

ml m2 h(a, c+ u a, c )  -3, 2 h K a y  c = ml m2 hq, c2 1 (2.la) 

with h K a y C  = 0 on y = yL,YR, (2.1 b) 

and a, (m, m2 hu) = 0. (2.2) 

Here (2, y) are curvilinear coordinates aligned along and across the flow (Yotsukura 
& Sayre 1976), m,, m2 are metric coefficients (see figure l ) ,  c(x ,  y, t )  is the contaminant 
concentration, h the water depth, u the rate of crossing of 2-contours (the velocity 
is m, u), K the transverse diffusion coefficient, q the depth-averaged source strength, 
and yL, yR the left and right banks of the stream. Secondary circulation, such as that 
due to bends, has been averaged out, i.e. the contribution to the cross-stream diffusion 
process is allowed for by an appropriate modification to K (Fischer 1969). 

The above equations have been studied at great length by the author (Smith 1983, 
1984). Two useful averages are the cross-section average 

f = j"" m, m2 hf dy/j"" m, m2 h dy, 
YR YR 

and the flow-weighted average 

[ f ] = jyL m, m2 hujdy/JY" m, m2 hu dy. 
YR YR 
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FIQURE 1.  Flow-following coordinate system for a meandering channel. 

With a slight abuse of notation, we write 

where 

(2.5a) 

A = 1'" m,hdy (2.5b) 
YR 

is the cross-sectional area. The integrated form of the mass-conservation equation 
(2.2) can then be written 

m, U, A = F = constant, 

where F is the river volume flow rate. The conventional choice of x-coordinate is to  
make m, = 1. However, in $8 we find the extra freedom of a distorted longitudinal 
coordinate can be useful. 

(2.6) 
- 

3. Moments and the time-lag functions 
The major virtue of the two-zone model proposed by Smith (1981, $5) is that it 

reproduces many asymptotic (large-time) properties of the spatial moments. For 
longitudinally varying flows such moments with respect to x cannot be used. 
However, Smith (1984) gives corresponding asymptotic (large-distance) results for 
temporal moments : 

W 

c(')(x, y) = 1 dc(x, y, t)  dt, (3.1) 
- W  

where 7 is a displaced time coordinate relative to the mean travel time from the source 
position x = x,,: 
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For a discharge at t = 0,x = xo with cross-stream profile q(yo), Smith (1984, 
equation (4.9)) shows that a t  a far-downstream location (2, y), the centroid time of 
arrival is 

Here the downstream and upstream time-lag functions G,, G- satisfy the advection- 
diffusion equations 

rn,m,hua,G+-a, (3.4a) 

-m,m,hua,G--a,  (3.4b) 

with 
hKa,G+ = hKa,G- = 0 on y = yL,yR (3.4c) 

and [G,] = [G-] = 0. (3.4d) 

The absence of time derivatives makes these equations for G,,G- an order- 
of-magnitude easier to solve than (2.la,  b) for c(x,y,t). For example, the NAG 
computer routine DO3 BPF is directly applicable to (3.4). Thus, we shall regard G+ 
and G- as being known. Qualitatively, the cross-stream structure of G+ and G- can 
be inferred from the forcing term (1 - u / G ) .  In  the slow-moving water at  the sides 
of the river, the forcing term is positive and there is a time lag (G+ and G- are positive). 
While, in the fast-moving water at the centre, the forcing term is negative and there 
is early arrival (G, and G- are negative). 

For the particular case of a discharge proportional to the local river flow u/E,  the 
temporal variance Zg of [c] at large distances downstream can likewise be related to 
these same functions G,, G-: 

ZZ, = 2 j:o ~ d x ’ - 2 [ G + G . - l x 0  (3.5) 

(Smith 1984, equation (6.10)). The integral term allows us to evaluate the effective 
longitudinal diffusivity (shear-dispersion coefficient) : 

D = qS2G+.  (3.6) 

The inclusion of the factor in the definition (3.6) makes D independent of the choice 
of s-coordinate. The q, term in (3.5) relates to the initial inefficiency of the 
longitudinal dispersion process in the convective region. 

The familiar role of 19 is in a diffusion model for the shear-dispersion process 

(3.7) 

For the third moment (relative to the displaced time of arrival T), a key role is 
(Taylor 1953). 

again played by the functions G,, G- (Smith 1984, Q 10) : 

(3.8) 
dx’ 

- I (T-  T)S [c] dt x 6 (G, G-- [G, G-1) :+ constant. s:, - U 

1 0 0  

[C(O)] -00 

The constant term depends upon the discharge position xo and the profile q. Usually 
G+ G- > [G, G-1, so the third moment increases with x - x o .  The corresponding linear 
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growth (3.5) of the second moment implies that the skewness with respect to  time 
is positive with slow decay as (z-zo)f (Chatwin 1980). It is the marked skewness 
of the observed contaminant distributions (Nordin & Sabol 1974) that invalidates 
the use of classical diffusion models of the dispersion process (Taylor 1953). 

The above results ((3.3), (3.5), (3.8)) establish that the two functions a+, 0- provide 
the ingredients for a good asymptotic model for the dispersion process. To see how 
to use those ingredients, the next section explores the exact structure of the solution 
for the concentration c(z, y, t ) .  Readers more concerned with the results than with 
derivations can turn to 86, where the eventual two-equation model is stated. 

4. Spatial eigenmodes 
A useful interpretation of the two-zone model proposed by Smith (1981, 95), is a 

two-mode truncation of the full advection-diffusion equation. For non-uniform flows 
there are not temporal modes as used by Smith (1981). However, there are spatial 
modes (Smith 1983, $7) which satisfy the equations 

with 
h K i 3  v n  $ ( + ) = h K a  Y n  $(-I= 0 ony=yL,yR,  (4.1 c) 

[$k+ $k- '3 = 1, (4.ld) 

[$k+)$;-)I = 0 ( n  ~j ) ,  (4.1 e )  

The El factors in (4.1 a, b)  have been included to make pn independent of the choice 
of z-coordinate. The lowest mode is 

[4k+)aX4,-)1 = [$k-)az$k+q = 0. (4 . l f  1 

$6+) = $6-1 = 1, with po = 0, (4.2) 

corresponding to uniform concentration across the flow. The constraint (4. i f )  
minimizes the z-dependence of the modes, so that in the limiting case of uniform flows 
the adjoint upstream and downstream modes 4k-1, $k+) become identical. 

To incorporate the time dependence of the concentration and discharge strength, 
we define 

Thus, the $k+) component of (2.1 a, b) becomes 

(4.3a, b) 

(4.4a, b )  

We can infer from (4.5) that downstream of the source, the convergence of the series 
( 4 . 3 ~ )  for c becomes quite rapid. First, the eigenvalues p n  grow as n2.  Secondly, the 
increasingly oscillatory structure of the higher modes $k+), $k-) implies that the 
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off-diagonal coefficients m j  decay as n-l. Hence, the overall rate of decay of the 
c, coefficients is as n-3. A detailed evaluation of the coefficients, which conforms to 
these general trends, is given in ( 8 . 2 ~ ~  b). 

The rapid convergence suggests that reasonable results might be obtained with a 
truncated set of equations. Indeed, a direct two-mode truncation n = 0 , l  of (4.5) 
yields a pair of equations similar to the dead-zone model (1.1). To improve upon the 
accuracy of this truncation in the longitudinally uniform case, Smith (1981, 95) 
replaces the q51 mode and the decay rate pl by choices which lead to optimal accuracy 
at large times. The objective of the present paper is to do likewise for non-uniform 
flows. 

5. Choosing the approximate modes 
The results quoted in $3 show that if an approximation correctly reproduces the 

time-lag functions G+, G-, then it will automatically yield accurate asymptotic results 
for the temporal centroid, variance and skewness. Thus, exact representations for 
G+, C;r_-provide a starting point for the derivation of approximations : 

m m 

n-1 n-1 
G+ = I: tk+’(x) q55;‘)(x, y), G- = I: tk--’(z) q5k-)(z, y), (5.1 a, b) 

with 

(5.1 c) 

(5.ld) 

(Smith 1983, equation (7.6)). The use of the t ,  notation alludes to the time 
dimensionality of the coefficients. 

For later use, we note the formulae 

m 

( 5 . 2 ~ )  

(5.2b, c) 

(5.2d) 

(5.2e) 

(5.2.f 1 

As remarked in $3, i t  is comparatively easy to compute G+,G-. Thus, we shall 
regard these functions as being known, and we pose the one-mode approximation 

(5.3a, b) 
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and [@+@-I = 1, i.e. I lT-  = [G+G-1. (5.3e) 

The corresponding truncated version of (4.5) is 

a,[c]+ua,[c] = pi+ a,cl, ( 5 . 4 ~ )  

G+ G- a, C, + u(a, c1 + ET, p ~ l )  = qQr- - m- at[~]. 
[G+G-I 

(5.4b) 

If we multiply (3.4a, b) respectively by G-, G+ and average across the flow, we can 
derive the identities 

K ay G+ a, G- = G- - U[G- 8, G+] = G+ + U[G+ a, (2-1. 
~ (5.5) 

These enable us to confirm the compatibility between the product formula (5.3e) and 
the ordinary differential equations (5.3c, d).  

To fully determine the coefficients 3, , $-, p, we need a further constraint. Instead 
of seeking yet another exact property of the concentration distribution, we choose 
instead to simplify the model equations - (5.4a, b). Specifically, we equate the two 
coupling coefficients, i.e. $+ = @-. This leads to the formulae 

(5.6b, c )  

6. Two-equation model 
The outcome of the analysis of the previous two sections is the pair of equations 

where 

(6.1 a) 

(6.1 b) 

(6 .1~)  

Here c1 is a measure of the concentration non-uniformity across the river, and q1 is 
the corresponding non-uniformity of the discharge. The time-lag functions 
G+(z, y), GJz, y) are defined in (3.4a-d) and the spatial decay rate p is given by the 
formulae - 

G+++T~~,[G+G_I 1 a,G- axG+ +- - - _  '= - m,%[G+G-] 2 E T 1 ( 7  

The implied two-term approximation to the concentration profile across the flow is 
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Equation (6.1 a) describes how the uniform contribution [c] to the concentration 
is carried at  the bulk velocity U, and that any spreading is associated with the rate 
of change of cl. Equation (6.1 b) shows that the perturbation from uniformity across 
the flow is generated via the rate of change of [c]. The response takes place over a 
distance of order l ip and tends to be carried along at a velocity 

- [G+ (7-1 
G+ G- 

u,, = u-. 

The skewness of the [c] contaminant distribution (i.e. the drawn-out tail) can be 
linked to the slowness of the c, mode. Specifically, the a, c1 coefficient in (6.1 b) is the 
ratio U/ull (i.e. a slowness factor). If this is greater than 1, then (3.8) shows that 
the temporal skewness is positive, i.e. a rapid surge of concentration when the 
contaminant arrives at  the monitoring position, followed by a more gradual decay. 

By construction, for an arbitrary source distribution q(z, y, t ) ,  the time-integrated 
concentration and centroid are exact at large distances downstream. Also, the 
dominant contributions to the variance and skewness are correct. In the special case 
in which the discharge strength is proportional to the local river velocity, the variance 
is exact. 

The main advantage of (6.la, b) over a more empirical model such as ( l . l u ,  b) is 
that the coefficients are properties of the river. Thus, if time-series parameter 
estimation is used to evaluate the coefficients for one set of discharge conditions, the 
equations should be equally applicable to other discharge scenarios. Another 
advantage is that it is possible to infer how the coefficients need to be changed for 
a different flow rate, or if the depth profile were to be modified by dredging. All that 
needs to be done is to examine how the functions G,, G- are changed. 

In the Appendix it is shown that there is an alternative formulation of (6.la, b) 
which corresponds even more closely to the dead-zone model (1.1 a, b). 

7. Illustrative example 
As a preliminary to the investigation of longitudinal variations of the river breadth, 

this section concerns the simpler circumstance of longitudinally uniform channels. 
The river is assumed to comprise a constant-depth central region, and two symmet- 
rical constant-depth side regions, with constant velocities and diffusivities within 
each region (see figure 2) .  In  practice, the transition of velocity and of diffusivity 
would take place smoothly over a width comparable with the water depth. Thus, in 
using an abrupt transition, we are assuming that the river is much wider than it  is 
deep. The depth ratio is denoted 1 : r and the ratio of volume flow between the central 
region and the sum of the sides is denoted 1 +s: 1 -8. Following Smith (1984, 
appendix B), we relate the velocities and diffusivities respectively to the $ and 
powers of the local depth. Hence, the breadths, depths, velocities and diffusivities 
of the central and side regions have the specifications 

2( l+s)  
1 + s+ (1  -8) r-t ’ 

1 + s+ (1 - 8) r-t 
1 + 8 + (1 - 8) r-l ’ 

B 

h 

- 
u+[ 1 + s + ( 1 - s) r-41, 

I f4[ l+s+( l - s )r - t ] ,  

I (1-4 
(1  +s) A+ 1-8’  

B 

I -(I +s) rt + 1-8  
(1 +s) &+ 1 - s’ 

h 

I - 
u$[ ( 1 + 8) r.t + 1 - s], 

lq[r~(l+8)+l-s] .  
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Position from side to centre 

r = 0.1 

FIGURE 2. Family of depth profiles with depth ratios 1 : r and volume flux ratios 1 :re between 
the centre and side sections. 

Here B is the distance from the centreline to  the sides, the mean depth, and U 
the mean or bulk velocity. The representation for the diffusivity is based upon the 
observation that typically K scales as the product hu. The quantity K has the 
dimensions and magnitude of a transverse diffusivity . 

For algebraic convenience we choose the y-coordinate to correspond with the 
fractional volume, integrated out from the centreline y = 0: 

Hence, the depth transition is at y = !j(l+s), and the channel boundary is at y = 1. 
The resulting equations (3.4) for the time-lag function Q = a+ = G- become 

with 

and 

(l--s)Q for 0 < y < ;(l+s), 

(l+s)Y for+(l+a) < y < 1, 

d2G 
r-2- = 

dY2 

d2Q - 
dY2 

dG dG 
r - across y = f(1 +a), Q = Q ,  r--8-= 2 

dY dY 

dC 

dY 
- 0  o n y = 0 , 1 ,  

I: Qdy = 0, 

_ -  

where for clarity the dimensional factors of G are carried by the quantity 5%: 

g =- BB 4 ( r f - 1 )  
K r2(1 +s+ (1 - 8 )  r f ) s '  

The solution for Q is given by 

( 7 . 3 ~ )  

(7.3b) 

(7.3c) 

(7 .3d)  

(7.3e) 

( 7 . 4 4  

(7.4b) 
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1 .o 

0.8 

0.2 

0 
- 1.0 - -0.5 0 0.5 

Flux asymmetry parameter, s 
1 .o 

FIGURE 3. Contours of the non-dimensional longitudinal dispersion coefficient DKl7ii: 2B2 as a 
function of topography parameters r ,  8. The asterisks show the ( r ,  8)-values for the depth profiles 
illustrated in figure 2. 

It is straightforward to evaluate the integrals required for the two-equation model 

0 (?+-1)(1--82)2 
-= 
g 24( 1 + s+ (1 -8) r-i) (7.5a) 

m= (1-s2)2{~(11(1+s)3+-)--((1+s)3r2--)}, (1-43  1 (1 -$)a (7.5b) 
$2 240 11 576 r2 

- 
- (1  + s) (1  -5s) r2 

cZ-[G2] - (r-i-1)(1-82)3 1 - 
Y2 1 +s+ ( I  -8) r 5  1440 

(7.5c) 

We note that there are several simplifications if r and s are related: 

1-r2 . 1-8  
s = -  1.e. - = r2 

1+r2’  l + s  

(see figure 2).  This special family of profiles is given greater emphasis in the next 
section. 

From (3.6), (7.3f) we see that the dispersion coefficient D scales as E;;li2B2/K. 
Figure 3 gives contours for the precise numerical factor. Without loss of generality, 
the results have been restricted to 0 < r < 1 .  If i t  should happen that the side regions 
are deeper than the central region, then it suffices t o  replace r by r-l and s by -8. 
Although the dispersion coefficient does not appear explicitly in the present two- 
equation model, it does given an easily understood and direct measure of the efficiency 
of the dispersion process. In particular, there is extreme sensitivity to the precise 
value of the depth ratio r. 

Proceeding to the two-equation model (6.1 a, b ) ,  figure 4 gives a contour plot of the 
‘slowness factor’ @/[PI. A noteworthy feature exhibited in figure 4 is that when 
there is comparatively little flow in the deeper central region (i.e. s negative), the 
‘slowness factor’ can be less than 1 and the temporal skewness negative (see equation 
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FIGURE 4. Contours of the 'slowness' of the c1 mode (i.e. the bulk velocity u divided by the velocity 
ul1 of the cl mode.) 

L 

.- 

1 .o I , , , , I , , , , I , , , ,  

* 
0.8 - 

0.6 - 

0.4 - 

- 1.0 -0.5 0 0.5 
Flux asymmetry parameter, s 

1 .o 

FIGURE 5. Contours of the transfer coefficient a/[@]! for interaction between the [c] and c1 
contributions to the concentration distribution. 

(3 .7)) .  Thus, the characteristic positive temporal skewness for natural streams 
(Nordin & Sabol 1974) can be attributed to the typical depth profile which has 
the bulk of the flow in the deeper parts. The slowness, and hence the skewness, is 
most marked when there is a narrow shallow sill (the bottom right-hand corner of 
figure 4). 

Figures 5 and 6 give contour plots of the transfer coefficient B/[Gz]:  and the 
non-dimensional spatial decay rate 

,uB%,%/K. ( 7 . 7 ~ )  
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- 1.0 -0.5 0 0.5 110 
Flux asymmetry parameter, s 

FIGURE 6. Contours of the non-dimensional spatial decay rate pB%i.,I/K for the c, mode. 

As in figure 3, the dependence is principally upon the depth ratio r ,  but with much 
reduced sensitivity. 

The experiments of Sumer (1976) suggest that K scales as 0.15hu,, where the friction 
velocity u* is about & of the longitudinal velocity m,u. Hence, the dimensionless 
expression ( 7 . 7 ~ )  is independent of the flow rate F and is of the order 

100pB2/h. (7.7b) 

A typical value of 10 (see figure 6) corresponds to an e-folding distance of 10Bn/K, 
which for an 10: 1 breadth-to-depth ratio is l00B downstream. The significance of 
this lengthscale is that at much shorter distances (say lOB), the cross-stream 
concentration profile cannot be adequately represented by just the [c]  and c1 modes. 
While, at very much larger distances (say 1000B), the skewness becomes small and 
a diffusion model is adequate. For a river with B = 100 m, this window of relevance 
for the two-equation models extends from 1 km to 100 km downstream of a discharge. 

Throughout this paper, great emphasis has been placed on the importance of being 
able to adapt a model to different flow conditions. Thus, it  warrants reiteration that, 
with the exception of a, all the coefficients arising in the two-equation model are 
almost independent of the river volume flow rate F. Of course, the water depth has 
a weak (square-root) dependence upon F. So, the r and s values need to be adjusted. 
However, the only substantial changes in the model equations (6 . la ,  b) or (7.4) are 
in the explicit U velocity terms. Indeed, the precise representation of the spatial decay 
term p was designed to achieve such robustness to changed flow conditions. The next 
section reveals similar resilience to longitudinal non-uniformity . 

By contrast, in a diffusion model (3.8) the conversion factor relating the dispersion 
coefficient D to the non-dimensional results in figure 3, scales as F. Also, the extreme 
sensitivity of D to the depth ratio r would make interpolation difficult when the river 
varies from section to section. The relationship 

DK B2 K -- 
@ 2 B 2  - [Cel (pa%, a) (7.8) 
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FIGURE 7. Perspective view of a self-similar depth profile as sliced along the centreline. The 
parameters specifying this particular geometry are r = 4, s = $, E = i. 

relates the results in figure 3 to those of figures 5 and 6. Hence the sensitivity of the 
dispersion coefficient D to r is shared out and greatly reduced in the two-equation 
model. 

8. Self-similar depth profiles 
We now modify the two-region geometry studied in the previous section, to permit 

variation of depth and breadth. However, we require that the depth ratio 1 : r  and 
the division of the volume flow 1 + s : 1 - s between the central region and the sides 
remain constant (see figure 7). Mass conservation imposes the relationship 

%,&B = F = constant. (8.1) 

To cope with the x-dependence of G,, G- we utilize the eigenmodes. The symmetry 
of the geometry allows us to ignore the antisymmetric modes, and the self-similarity 
makes the modes independent of x: 

q5, = p, cos (A, ry) for 0 < y < +(I +s), ( 8 . 2 ~ )  

q5, = ( - l ) ,q ,  cos(A,r-'(l--y)) for+(l+s)  < y < 1, (8 .2b)  

where 

(8.2d) 
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(8.2e) 

(2r-f - +(r" 2 - 1 ) p i (  1 + 8 + sin [An r( I + a) ] ) } .  (8.2 h) 
1 - 

4: = l+s+r-f( l -s)  

The roots An can be arranged in sequence: 

1-8) r < (n++)x .  

The 2-dependence arises in the decay rate 

K r2[l +s+( l - s )  r-!I3 
BFW, 4 [ 1 + s + ( l - s ) d ]  ' 

pn = ha,- 

To solve for the amplitudes tk+),tk-) in the eigenfunction expansions (5.la, b), we 
need to evaluate the double integrals (5.1 c, d).. 

These can be simplified if the decay exponents Elpn are made independent of 2. 
From (8.4) and mass conservation (8.1) we see that this implies a particular distortion 
for the longitudinal coordinate : 

The remaining l /Z integrands in (5.1c, d )  are also influenced by this coordinate 
distortion. Mass conservation, together with the scaling of K as O.OIE, & enables us 
to relate l /Z to Thus, as was noted by Smith (1983, §9), it is breadth changes 
that are important as regards the memory character of the dispersion process. 
Moreover, the cubic dependence of tk,), I$-) upon B(z )  gives an exaggerated response 
to breadth changes. 

As a specific example we take 

(8.6) } 
- 

B = Bo( 1 + E cos Z X ) ~ ,  h = ho( 1 + E cos Z X ) ~ ,  
- 

K = KO( 1 + E cos h - 4 ,  El = 1, u = uo( 1 +€ cos 12) -1 .  

Here E is a measure of the topographic changes, and 1 is the longitudinal wavenumber. 
The formulae (5.1 c, d) become 

(8.7a) 

(8.7 b)  

The memory effects give a phase lag in tk+) and a phase lead in ti-) relative to the 
breadth changes. To simplify the presentation of numerical results, figure 7 and the 
subsequent figures are restricted to the case 

E = z  9. (8.8) 



Two-equation model for contaminant dispersion 

Ix 

271 

.-. . .  

Thus, along the flow the breadth changes by a factor of two, with a factor-of-four 
depth change, i.e. large enough to be realistic. 

From (8.2) we note that, if r and s are related, 

1-r2  
1 +r2  

8 = -  

(see figure 2), then there are major simplifications. In  particular, $,, = 0, so we need 
only consider the q52n+1 modes: 

(8.10) 

All subsequent results are restricted to this family of depth topographies. We remark 
that the 3: 1 ratio between the A-values for n = 1, n = 0 implies a 1 :9 ratio between 
the corresponding e-folding distances. 

As a precursor to the two-equation modelling, figure 8 shows the non-dimensional 
shear dispersion coefficient 

D K ~ / u ~  BQ. (8.11) 

The nine curves correspond to the three-depth ratios r = 0.7,0.5,0.3 and to the three 
non-dimensional topographic wavenumbers L = 3,10,30, where 

(8.12) 

One longitudinal cycle of topography 

FIGURE 8. Logarithmic graph of the local longitudinal shear dispersion coefficient for the three depth 
ratios r = 0.7,0.5,0.3 and for topographic changes which by comparison with the rate of lateral 
mixing are short ( *  * . . . .), moderate (-), or long (---). 
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FIGURE 9. The x-dependence of the transfer coefficient when the depth ratio has the values 
r = 0.7,0.5,0.3 and for non-dimensional topographic wavenumbers L = 30 ( * 1 * * * ), 10 (-), 
3 (---). 

i.e. long, moderate and short lengthscales relative to the diffusion length associated 
with the c1 mode. In all cases, the values of D exhibit marked variations with respect 
to x (by up to a factor of 64). As in figure 4, there is also extreme sensitivity to the 
depth ratio r .  It is these wide ranges of values of D which necessitated a logarithmic 

It is now straightforward to perform the summations ( 5 . 2 ~ - e )  and to evaluate the 
cross-sectional integrals [G, G-],8+, G, G-, etc. In  particular, we find that the 
slowness factor is independent of x : 

plot. 

(8.13) 

In the three depth ratios r = 0.7,0.5,0.3 the respective slowness values are 
1.06,1.23,1.65. 

Figures 9 and 10 show the 2-dependence of the transfer coefficient (G, G-/[G+ 6 1 ) :  
and of the non-dimensional spatial decay rate 

_ -  

(8.14) 

More usually p varies as h/B2. It happens that, for the particular geometry (8.6), the 
quantity h/Bz is constant, and p is virtually independent of x. 

The general implications that can be inferred from the above illustrative 
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Ix 
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One longitudinal cycle of topography 

FIGURE 10. The x-dependence of the non-dimensional spatial decay rate when the depth ratio has 
the values r = 0.7,0.6,0.3 and for short- ( *  * * * * - ), moderate- (-), or long- (---) wavelength 
topographic changes. 

example, are that in the model equations (6.lu,  b), the coefficients 
[a+ G - ] / c , ,  (??+a_/[@+ Q-] )k ,  p do not vary very much. The principal x-depen- 
dence and flow-dependence is in the explicit 3 terms. 

9. Concluding remarks 
This work is based upon the premise that pollution prediction methods based upon 

field observations or upon hydrodynamics should be identical. The starting point was 
the empirical dead-zone model ( l . l u ,  b) used by Beer & Young (1983). The present 
analysis, based upon the hydrodynamics, leads to the suggestion of a closely related 
model (6.1 a, b). Depending upon circumstances, the coefficients in that model could 
be evaluated either from field observations or from equations for advection and 
diffusion. It is when flow conditions change (floods, droughts, land reclamation or 
dredging) that the hydrodynamic basis is important, in ensuring the continued 
applicability of the pollution-prediction model. 

Dr Fu Jia of the Chinese Academy of Sciences, Beijing, with his concern about the 
Yangtze, asked the key questions which stimulated this work. Financial support was 
given by the Royal Society. 
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FIGURE 11. Sketch of a two-layer flow with a varying division of the total volume flux between 
the two well-mixed layers. 

Appendix. Two well-mixed zones 

equations €or the concentrations ca, cb in these two zones are 

1 

m1 

1 

m1 

Figure 11 shows two well-mixed zones with areas A,, A, and velocities u,, u,,. The 

at(AaCJ + Aa ua a, Ca = Aa Qa + (ZizAA + H(az(Aam1 Ua)) =ax(A,Zl Ua)) ($- Ca), 

(A la)  

a,(Ab%)+Ab%a,% = A b Q b + ( ~ i ~ A A + H ( a , ( A b ~ l  %J))-az(Abmlub) (Ca-Cb). 

(A t b )  
Here Qa, Qb are the source strengths, A an exchange coefficient, and the Heaviside 
function terms allow for the varying division of volume flux between the two zones. 
The dead-zone model (1 .1  a, b )  is a special case with 

A ,  A,=-A, a A = - .  a 
u,=u ,  % = O ,  A , = -  

a+P a+B U 

To convert the two-equation model (5.4a, b) to the form (A la ,  b), we need to 
diagonalize the a, and a, terms. To do this, we define the combination variables 

(A 3% b)  
l + Y  

5 = ( y - q / K ,  (A 4a) 

c, = [c]--c1, 5 cb = [ c ] + 1 - y c ’ *  5 

The necessary choices for the parameters 6, y can be shown to be 

with 

and 

In terms of 6, y,  6 the two-zone flow can be specified 
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FIGURE 12. Contours of the flux mymmetry coefficient y in the two-zone model as a function of 
the depth ratio r and the actual flux asymmetry s. 
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FIGURE 13. Contours of the area asymmetry coefficient 8 in the two-zone model. 

The dead-zone model (l.la, b )  corresponds to 
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FIGURE 14. Contours of the non-dimensional exchange coefficient AB%, Ti/K for the equilibration 
of the zone concentrations in the two-zone model. 

The two-zone character of the flow investigated in 5 7 makes the comparison with 
the two-zone model particularly intriguing. If the actual flow was well-mixed in each 
zone, then we could identify s with y.  Figure 12 shows that the more gentle mixing 
in the actual flow makes y weakly dependent upon the depth ratio r. For s greater 
than 0.5 the large value of y indicates that in this regime the dead-zone model yields 
results close to those of the new two-equation model. The direct counterpart of the 
area asymmetry parameter S is 

l + s - ( l - s ) d  
1 + s+ (1 - s) r-i. 

Figure 13 reveals that the &contours are qualitatively similar to this formula (e.g. 
the position and shape of the S = 0 contour). However, the (r, 8)-dependence is 
generally weaker (e.g. along r = 1 neither y nor S have the full range from - 1 to 1). 
Figure 14 shows contours of the non-dimensional exchange coefficient 

LIB%, U AB2 
x 100- 

K h .  

We note that this scaling for A is independent of the river volume flow rate F. Hence, 
for varied flow rate the only changes to the two-zone equations (A la, b) are in the 
explicit velocity terms u,, ub, U. 

For uniform flows there is a choice between the use of temporal and of spatial 
moments. This leads to a choice between the two-mode model (6.1 a, b) derived above 
and that derived by Smith (1981, $5). The coefficients in the respective models are 
not the same. However, neither are the choices [ c ]  and C for the principal dependent 
variable. This particular source of difference disappears in the respective two-zone 
formulations. For uniform flows the functions G,, G- are equal and can be related 
to the centroid displacement function g(y, z )  which arises in the use of spatial moments 
(Smith 1984, $11) .  In this way it can be confirmed that the two-zone specification 
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(A 4), (A 5 )  is the same as that given by Smith (1981, equations (5.11)-(5.13)). Hence, 
in the limit of longitudinally uniform flows, the two-zone version (A l a ,  13) of the 
present model is identical with its predecessor. 
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